226k views
5 votes
Prove that cos 4θ = 8 cos⁴ θ - 8 cos² θ + 1

User Kapoko
by
6.5k points

2 Answers

1 vote

Answer:

Explanation:

Answer is in the pic.

Prove that cos 4θ = 8 cos⁴ θ - 8 cos² θ + 1-example-1
User Vjk
by
5.9k points
3 votes

Answer:

See below for proof.

Explanation:


\boxed{\begin{minipage}{6 cm}\underline{Trigonometric Identities}\\\\$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$\\ \\$\sin^2 \theta + \cos^2 \theta=1$\\\end{minipage}}

Use the trigonometric identities to prove the given equation:


\begin{aligned} \implies \cos 4 \theta & = \cos (2 \theta +2 \theta)\\& = \cos 2 \theta \cos 2 \theta - \sin 2 \theta \sin 2 \theta\\& = \cos^2 2 \theta - \sin^2 2 \theta\\& = \cos^2 2 \theta - (1-\cos^2 2 \theta)\\& = 2\cos^2 2 \theta - 1\\ & = 2\left(\cos 2 \theta \right)^2-1\\& = 2\left(\cos\theta \cos\theta-\sin \theta\sin \theta\right)^2-1\\& = 2\left(\cos^2\theta-\sin ^2\theta\right)^2-1\\& = 2\left(\cos^2\theta-(1-\cos^2\theta)\right)^2-1\\& = 2\left(2\cos^2\theta-1\right)^2-1\\\end{aligned}


\begin{aligned}& = 2\left(4\cos^4\theta-4\cos^2\theta+1\right)-1\\& =8\cos^4\theta-8\cos^2\theta+2-1\\ & =8\cos^4\theta-8\cos^2\theta+1 \end{aligned}

User Anuruddhika
by
6.4k points