213k views
2 votes
Who can help me d e f thanks​

Who can help me d e f thanks​-example-1
User Reddirt
by
3.8k points

1 Answer

4 votes

d)


y = (2ax^2 + c)^2 (bx^2 - cx)^(-1)

Product rule:


y' = \bigg((2ax^2+c)^2\bigg)' (bx^2-cx)^(-1) + (2ax^2+c)^2 \bigg((bx^2-cx)^(-1)\bigg)'

Chain and power rules:


y' = 2(2ax^2+c)\bigg(2ax^2+c\bigg)' (bx^2-cx)^(-1) - (2ax^2+c)^2 (bx^2-cx)^(-2) \bigg(bx^2-cx\bigg)'

Power rule:


y' = 2(2ax^2+c)(4ax) (bx^2-cx)^(-1) - (2ax^2+c)^2 (bx^2-cx)^(-2) (2bx - c)

Now simplify.


y' = (8ax (2ax^2+c))/(bx^2 - cx) - ((2ax^2+c)^2 (2bx-c))/((bx^2-cx)^2)


y' = (8ax (2ax^2+c) (bx^2 - cx) - (2ax^2+c)^2 (2bx-c))/((bx^2-cx)^2)

e)


y = (3bx + ac)/(√(ax))

Quotient rule:


y' = (\bigg(3bx+ac\bigg)' √(ax) - (3bx+ac) \bigg(√(ax)\bigg)')/(\left(√(ax)\right)^2)


y'= (\bigg(3bx+ac\bigg)' √(ax) - (3bx+ac) \bigg(√(ax)\bigg)')/(ax)

Power rule:


y' = (3b √(ax) - (3bx+ac) \left(-\frac12 \sqrt a \, x^(-1/2)\right))/(ax)

Now simplify.


y' = \frac{3b \sqrt a \, x^(1/2) + \frac{\sqrt a}2 (3bx+ac) x^(-1/2)}{ax}


y' = (6bx + 3bx+ac)/(2\sqrt a\, x^(3/2))


y' = (9bx+ac)/(2\sqrt a\, x^(3/2))

f)


y = \sin^2(ax+b)

Chain rule:


y' = 2 \sin(ax+b) \bigg(\sin(ax+b)\bigg)'


y' = 2 \sin(ax+b) \cos(ax+b) \bigg(ax+b\bigg)'


y' = 2a \sin(ax+b) \cos(ax+b)

We can further simplify this to


y' = a \sin(2(ax+b))

using the double angle identity for sine.

User Sajin M Aboobakkar
by
4.5k points