Answer:
![\displaystyle{x= (17\pi)/(24)+ \pi n, (25\pi)/(24)+\pi n \ \ \ (n \in \mathbb{I})}](https://img.qammunity.org/2023/formulas/mathematics/college/68se3rg5nw4kcflia523j9865o8f4485bb.png)
Explanation:
Given the cosine equation:
![\displaystyle{\cos \left(2x - (3\pi)/(4)\right) = -(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/nww39tgvmh5nj4idxk4ha0anzpebntee2x.png)
Let:
![\displaystyle{\theta = 2x - (3\pi)/(4)}](https://img.qammunity.org/2023/formulas/mathematics/college/vb8zz4iwtq18rte71qb5ruhs4ppsky55wt.png)
Then we will have:
![\displaystyle{\cos \theta = -(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/vebth0pt2xxthbsdnk514jt0y1zne7jk2g.png)
We know that cosθ is negative in second quadrant and third quadrant.
In second quadrant:
![\displaystyle{\pi - (\pi)/(3)}\\\\\displaystyle{=(3\pi)/(3) - (\pi)/(3)}\\\\\displaystyle{=(2\pi)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/college/2x6caeclxsrcolu7ij68hfont9wp9hhcas.png)
In third quadrant:
![\displaystyle{\pi + (\pi)/(3)}\\\\\displaystyle{=(3\pi)/(3) + (\pi)/(3)}\\\\\displaystyle{=(4\pi)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/college/wgc89poa3nrjk7jetl9ur20fw97a9vog9b.png)
Therefore, we will have two solutions where:
![\displaystyle{\theta_1 = (2\pi)/(3)}\\\displaystyle{\theta_2 = (4\pi)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/college/weoy5upgt1njb56wikqsh65a0jfmbgc6ce.png)
Convert from theta back to the original expression:
![\displaystyle{2x_1-(3\pi)/(4)= (2\pi)/(3)}\\\\\displaystyle{2x_2-(3\pi)/(4)= (4\pi)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/college/aa85d1es2wiu4r1ytnpcqc8mbuvydj71bt.png)
Convert two equations into one:
![\displaystyle{2x-(3\pi)/(4)= (2\pi)/(3), (4\pi)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/college/wv3kuetn00idoqsl818shqchjqelbbmu0x.png)
Since you do not specify the interval, add
where
.
![\displaystyle{2x-(3\pi)/(4)= (2\pi)/(3)+2\pi n, (4\pi)/(3)+2\pi n}](https://img.qammunity.org/2023/formulas/mathematics/college/n5d7gahxwlngs5gsf7ki6npewb33kgxxux.png)
Solve the equation for x:
![\displaystyle{2x= (2\pi)/(3)+(3\pi)/(4)+2\pi n, (4\pi)/(3)+(3\pi)/(4)+2\pi n}\\\\\displaystyle{2x= (8\pi)/(12)+(9\pi)/(12)+2\pi n, (16\pi)/(12)+(9\pi)/(12)+2\pi n}\\\\\displaystyle{2x= (17\pi)/(12)+2\pi n, (25\pi)/(12)+2\pi n}\\\\\displaystyle{x= (17\pi)/(24)+ \pi n, (25\pi)/(24)+\pi n}](https://img.qammunity.org/2023/formulas/mathematics/college/et2xvkhmpxng2oy8n6bfn45p2y91kt1fj0.png)
Therefore, the solution is:
![\displaystyle{x= (17\pi)/(24)+ \pi n, (25\pi)/(24)+\pi n \ \ \ (n \in \mathbb{I})}](https://img.qammunity.org/2023/formulas/mathematics/college/68se3rg5nw4kcflia523j9865o8f4485bb.png)