258,135 views
35 votes
35 votes
1. P =
\begin{pmatrix}-\sin \left(x\right)&\cos \left(x\right)\\ \cos \left(x\right)&\sin \left(x\right)\end{pmatrix}

Q =
\begin{pmatrix}\sin \left(x\right)&\cos \left(x\right)\\ \cos \left(x\right)&-\sin \left(x\right)\end{pmatrix}
and I is a 2×2 identity matrix. Find PQ +2I

2. P =
\begin{pmatrix}\cos \left(x\right)&-\sin \left(x\right)\\ \sin \left(x\right)&\cos \left(x\right)\end{pmatrix}
Q =
\begin{pmatrix}\cos \left(x\right)&\sin \left(x\right)\\ -\sin \left(x\right)&\cos \left(x\right)\end{pmatrix}
and I is a 2×2 identity matrix. Find PQ +2I

User John Guan
by
2.8k points

1 Answer

25 votes
25 votes

Answer:

We know that:


  • \left[\begin{array}{cc}a&b\\c&d\end{array}\right] = ad - bc
  • The 2x2 identity matrix has a = d = 1 and b = c = 0
  • sin²x + cos²x = 1

#1

The values:


  • P = \left[\begin{array}{cc}-sinx&cosx\\cosx&sinx\\\end{array}\right] = -sin^2x-cos^2x= -1

  • Q = \left[\begin{array}{cc}sinx&cosx\\cosx&-sinx\\\end{array}\right] = sin^2x-(-cos^2x)= sin^2x+cos^2x=1

  • I = \left[\begin{array}{cc}1&0\\0&1\\\end{array}\right] = 1-0=1

The sum:

  • PQ + 2I = (-1)*1 + 2*1 = -1 + 2 = 1

#2

The values:


  • P = \left[\begin{array}{cc}cosx&-sinx\\sinx&cosx\\\end{array}\right] = cos^2x-(-sin^2x)= 1

  • Q = \left[\begin{array}{cc}cosx&sinx\\-sinx&cosx\\\end{array}\right] = cos^2x-(-sin^2x)= 1

  • I = \left[\begin{array}{cc}1&0\\0&1\\\end{array}\right] = 1-0=1

The sum:

  • PQ + 2I = 1*1 + 2*1 = 1 + 2 = 3
User Akshay Vishnoi
by
2.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.