129k views
0 votes
Find the coordinates of the point C on AB such that the ratio of AC to CB is 1:4 for A(-3,-1) and B(7,4)

User Robin Cox
by
5.1k points

1 Answer

5 votes

Answer: C(-1,0)

Explanation:

A(-3,-1) B(7,4) AC:CB=1:4


If\ you\ know\ two\ points\ of\ the\ plane\ A(x_A,y_A),\ B(x_B,y_B) \ then\ the\


coordinates \ of \ the\ point\ C(x_C,y_C),\ which\ divides\ the \ segment \ in\ the\ relation


\lambda=(AC)/(CB)\ are\ expressed \ by\ the\ formulas:


\boxed {x_C=(x_A+\lambda x_B)/(1+\lambda) }\ \ \ \ \ \ \ \ \ \ \ \ \boxed {y_C=(y_A+\lambda y_B)/(1+\lambda) }

Hence,


\displaystyle\\\lambda=(AC)/(CB)=(1)/(4) =0.25


\displaystyle\\x_C=(-3+0.25*7)/(1+0.25 )\\\\x_C=(-3+1.75)/(1.25) \\\\x_C=(-1,25)/(1.25) \\\\x_C=-1


\displaystyle\\y_C=(-1+0.25*4)/(1+0.25) \\\\y_C=(-1+1)/(1.25)\\\\y_C=(0)/(1.25)\\\\y_C=0

Thus, C(-1,0)

User Jonah Williams
by
5.3k points