228k views
4 votes
Use the procedures developed in this chapter to find the general solution of the differential equation. 3x3y''' + 28x2y'' + 55xy' + 9y = 0

User Vhadalgi
by
4.2k points

1 Answer

1 vote

Substitute
x=e^t. By the chain rule,


(dy)/(dx) = (dy)/(dt)\cdot(dt)/(dx)

Now
t=\ln(x)\implies(dt)/(dx)=\frac1x, so


(dy)/(dx) = \frac1x (dy)/(dt) \\\\ ~~~~~~~~ \iff (dy)/(dt) = x(dy)/(dx)

Differentiate both sides again to recover the second and third derivatives.


(d^2y)/(dx^2) = -\frac1{x^2}(dy)/(dt) + \frac1x (d(dy)/(dt))/(dx) \\\\ ~~~~~~~~ = -\frac1{x^2}(dy)/(dt) + \frac1x \left((d(dy)/(dt))/(dt)\cdot(dt)/(dx)\right) \\\\ ~~~~~~~~ = -\frac1{x^2} (dy)/(dt) + \frac1{x^2}(d^2y)/(dt^2) \\\\ ~~~~~~~~ \iff (d^2y)/(dt^2) - (dy)/(dt) = x^2 (d^2y)/(dx^2)


(d^3y)/(dx^3) = \frac2{x^3}(dy)/(dt) - \frac1{x^2}(d(dy)/(dt))/(dx) - \frac2{x^3} (d^2y)/(dt^2) + \frac1{x^2}(d(d^2y)/(dt^2))/(dx) \\\\ ~~~~~~~~ = \frac2{x^3} (dy)/(dt) - \frac1{x^2}\left((d(dy)/(dt))/(dt)\cdot(dt)/(dx)\right) - \frac2{x^3} (d^2y)/(dt^2) + \frac1{x^2}\left((d(d^2y)/(dt^2))/(dt)\cdot(dt)/(dx)\right) \\\\ ~~~~~~~~ = \frac2{x^3} (dy)/(dt) - \frac1{x^3} (d^2y)/(dt^2) - \frac2{x^3} (d^2y)/(dt^2) + \frac1{x^3}(d^3y)/(dt^3) \\\\ ~~~~~~~~ \iff (d^3y)/(dt^2) - 3 (d^2y)/(dt^2) + 2 (dy)/(dt) = x^3 (d^3y)/(dx^3)

The ODE then transforms to a linear one,


3\left((d^3y)/(dt^2) - 3 (d^2y)/(dt^2) + 2 (dy)/(dt)\right) + 28\left((d^2y)/(dt^2) - (dy)/(dt)\right) + 55(dy)/(dt) + 9 y = 0

or using Lagrange's prime notation,


3(y''' - 3y'' + 2y') + 28(y'' - y') + 55y' + 9y = 0


3y''' + 19y'' + 33y' + 9y = 0

The characteristic equation is


3r^3 + 19r^2 + 33r + 9r = (r + 3)^2 \left(r + \frac13\right) = 0

with roots at
r=-3 and
r=-\frac13, so the general solution is


y(t) = C_1 e^(-1/3\,t) + C_2 e^(-3t) + C_3 t e^(-3t)

Back in terms of
x, we get


\boxed{y(x) = C_1 x^(-1/3) + C_2 x^(-3) + C_3 x^(-3)\ln(x)}