By the Pythagorean theorem,
![\sin^2 t +\cos^2 t = 1 \\ \\ \sin^2 t +(-3/4)^2 = 1 \\ \\ \sin^2 t =7/16 \\ \\ \sin t=-(√(7))/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/7dgdsjxhm7g0y4d243u1j0ejxhukw8nkd1.png)
(I took the negative case because of the range of values of t)
Using the cosine double angle formula,
![\cos 2t=2\cos^2 t -1 =2(-3/4)^2 - 1 =1/8](https://img.qammunity.org/2023/formulas/mathematics/college/a511rvhfpu52x0zmq2afpzyy59laad8cif.png)
Using the sine double angle formula,
![\sin 2t=2\left(-(3)/(4) \right)\left(-(√(7))/(4) \right)=(3√(7))/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/cfxkml33urqd2p4q82tueb35wfrj86wq3d.png)
Using the cosine half-angle formula,
![\cos (t)/(2)= -(√(1+\cos A))/(2)=-\frac{\sqrt{1+(3√(7))/(8)}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/726kq5ob5ce4srjlzpq6n03ejxiqveuqsc.png)
(I took the negative case because of the range of values of t)
Using the sine half-angle formula,
![\sin (t)/(2)=(√(1-\cos A))/(2)=\frac{\sqrt{1-(3√(7))/(8)}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/c8wi5k0fs48oytqpm4v6amyj2weoum49re.png)
(I took the positive case because of the range of values of t)