1. First, convert the model distance to base SI.
![30\,\mathrm{cm} = 3*10^(-1)\,\mathrm m](https://img.qammunity.org/2023/formulas/mathematics/high-school/4418ivsg1lse5wsu2ekvodgiucye3ga7nr.png)
Then the ratio of model distance to actual distance is
![(30\,\rm cm)/(1.50*10^(11)\,\rm m) = (3*10^(-1)\,\mathrm m)/(1.50*10^(11)\,\rm m) = (2)/(10^(12)) = (2)/(2*5*10^(11)) = (1)/(5*10^(11))](https://img.qammunity.org/2023/formulas/mathematics/high-school/fo44b7fy5rf3n1bhmm1tv6coeini5wj56o.png)
or 1 : 5 × 10¹¹.
2. The model/actual distance ratio should be the same for each planet.
Mercury:
![12.6\,\mathrm{cm} = 1.26*10^(-1)\,\mathrm m](https://img.qammunity.org/2023/formulas/mathematics/high-school/3z45a8zy41vdwt0l09gqq3fvonaxgvizdn.png)
![(12.6\,\rm cm)/(5.80*10^(10)\,\rm m) = (1.26*10^(-1)\,\rm m)/(5.80*10^(10)\,\rm m) \approx (1)/(4.6*10^(11))](https://img.qammunity.org/2023/formulas/mathematics/high-school/bim2l5mp6wmyx6vevu1p3vz0qgutfzi2lu.png)
or 1 : 4.6 × 10¹¹.
Venus:
![21.6\,\mathrm{cm} = 2.16*10^(-1)\,\rm m](https://img.qammunity.org/2023/formulas/mathematics/high-school/sq9dki7e7ip4yz8dggixf8eb3yniky1wk8.png)
![(21.6\,\rm cm)/(1.08*10^(11)\,\rm m) = (2.16*10^(-1)\,\rm m)/(1.08*10^(11)\,\rm m) = (2)/(10^(12)) = (2)/(2*5*10^(11)) = \frac1{5*10^(11)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hvo6kd1ads4g2hpu7f1m480djw065py35s.png)
or 1 : 5 × 10¹¹.
Mercury's distance is the incorrect one. The correct model distance should be
such that
![(x\,\rm cm)/(5.80*10^(10)\,\rm m) = (1)/(5*10^(11))](https://img.qammunity.org/2023/formulas/mathematics/high-school/rlma5f1ukcrqumrpth96iazsr1celqmklq.png)
Solve for
.
![x\,\mathrm{cm} = (5.80*10^(10)\,\rm m)/(5*10^(11))](https://img.qammunity.org/2023/formulas/mathematics/high-school/j70m2zq9d4hwutitjcoktdw7sw4rxzbj9y.png)
![x\,\mathrm{cm} = (1.16\,\rm m)/(10^1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hyfiwsdrugzdp4fjob5pgzt7h67kdwdep6.png)
![x\,\mathrm{cm} = 1.16*10^(-1)\,\rm m](https://img.qammunity.org/2023/formulas/mathematics/high-school/55hhcqquby406jgftlq430xlwpawnimzwr.png)
![x\,\mathrm{cm} = \boxed{11.6\,\rm cm}](https://img.qammunity.org/2023/formulas/mathematics/high-school/g03jp3dlod1epwmw5iofpyb25firh3ws3t.png)
3.The actual distance for Mars is
such that
![(34.4\,\rm cm)/(y\,\rm m) = (1)/(5*10^(11))](https://img.qammunity.org/2023/formulas/mathematics/high-school/7mjt0gz1h5in4wubvw5qah64y7k9sv9f7r.png)
Solve for
.
![34.4*5*10^(11) \,\mathrm{cm} = y\,\rm m](https://img.qammunity.org/2023/formulas/mathematics/high-school/kxygakifogtfxsp496ojplo19ijjn9q951.png)
![y\,\mathrm m = 172 *10^(11)\,\rm cm](https://img.qammunity.org/2023/formulas/mathematics/high-school/xz2d6i2z8xnkxxfybld7d58op02pl8xjsz.png)
![y\,\mathrm m = 172 *10^(13)\,\rm m](https://img.qammunity.org/2023/formulas/mathematics/high-school/pzlxdock6qexnqthnpxu9u5y9gkqojo24n.png)
![y\,\mathrm m = \boxed{1.72} *10^{\boxed{11}}\,\rm m](https://img.qammunity.org/2023/formulas/mathematics/high-school/phc5uq0v33qci0v3n9t4a0ejszxal8igv5.png)
4. Divide the distance by the speed of light to recover the time.
![(7.92*10^(11)\,\rm m)/(3.0*10^8(\rm m)/(\rm s)) = 2.64*10^3\,\mathrm s](https://img.qammunity.org/2023/formulas/mathematics/high-school/wghux1s6gugiw3cru9utrcet6566wcu8di.png)
Convert to minutes.
![2.64*10^3\,\mathrm s \cdot (1\,\rm min)/(60\,\rm s) = 0.044*10^3\,\mathrm{min} = \boxed{44}\,\rm min](https://img.qammunity.org/2023/formulas/mathematics/high-school/ab6ifpceee8ca2jmmcjsfxhiqxs8v8crhm.png)