225k views
5 votes
Evaluate the following double integral where a = 2y


\int\limits^1_0 {x} \, \int\limits^2_a {cos(x^(2) )\, dx dy\\

Evaluate the following double integral where a = 2y \int\limits^1_0 {x} \, \int\limits-example-1
User Amolbk
by
3.3k points

1 Answer

7 votes

Change the order of integration.


\displaystyle \int_0^1 \int_(2y)^2 \cos(x^2) \, dx \, dy = \int_0^2 \int_0^(x/2) \cos(x^2) \, dy \, dx \\\\ ~~~~~~~~ = \int_0^2 \cos(x^2) y \bigg|_(y=0)^(y=x/2) \, dx \\\\ ~~~~~~~~ = \frac12 \int_0^2 x \cos(x^2) \, dx

Substitute
u=x^2 and
du=2x\,dx.


\displaystyle \frac12 \int_0^2 x \cos(x^2) \, dx = \frac14 \int_0^4 \cos(u) \, du = \frac14 \sin(u) \bigg|_(u=0)^(u=4) = \boxed{\frac{\sin(4)}4}

User Mark Pope
by
3.9k points