116k views
2 votes
Use the definition of a Taylor series to find the first three non zero terms of the Taylor series for the given function centered at a=1. Write the Taylor series in summation notation

Use the definition of a Taylor series to find the first three non zero terms of the-example-1

1 Answer

0 votes

Answer:


e^(4x)=e^4+4e^4(x-1)+8e^4(x-1)^2+...


\displaystyle e^(4x)=\sum^(\infty)_(n=0) (4^ne^4)/(n!)(x-1)^n

Explanation:

Taylor series expansions of f(x) at the point x = a


\text{f}(x)=\text{f}(a)+\text{f}\:'(a)(x-a)+\frac{\text{f}\:''(a)}{2!}(x-a)^2+\frac{\text{f}\:'''(a)}{3!}(x-a)^3+...+\frac{\text{f}\:^((r))(a)}{r!}(x-a)^r+...

This expansion is valid only if
\text{f}\:^((n))(a) exists and is finite for all
n \in \mathbb{N}, and for values of x for which the infinite series converges.


\textsf{Let }\text{f}(x)=e^(4x) \textsf{ and }a=1


\text{f}(x)=\text{f}(1)+\text{f}\:'(1)(x-1)+\frac{\text{f}\:''(1)}{2!}(x-1)^2+...


\boxed{\begin{minipage}{5.5 cm}\underline{Differentiating $e^(f(x))$}\\\\If $y=e^(f(x))$, then $\frac{\text{d}y}{\text{d}x}=f\:'(x)e^(f(x))$\\\end{minipage}}


\text{f}(x)=e^(4x) \implies \text{f}(1)=e^4


\text{f}\:'(x)=4e^(4x) \implies \text{f}\:'(1)=4e^4


\text{f}\:''(x)=16e^(4x) \implies \text{f}\:''(1)=16e^4

Substituting the values in the series expansion gives:


e^(4x)=e^4+4e^4(x-1)+(16e^4)/(2)(x-1)^2+...

Factoring out e⁴:


e^(4x)=e^4\left[1+4(x-1)+8}(x-1)^2+...\right]

Taylor Series summation notation:


\displaystyle \text{f}(x)=\sum^(\infty)_(n=0) \frac{\text{f}\:^((n))(a)}{n!}(x-a)^n

Therefore:


\displaystyle e^(4x)=\sum^(\infty)_(n=0) (4^ne^4)/(n!)(x-1)^n

User EJB
by
3.2k points