Answer:
1. (x + 8)(x + 3)
2. (x - 9)²
Explanation:
Given trinomials:
1.
![x^2+11x+24](https://img.qammunity.org/2023/formulas/mathematics/high-school/7rnfuwj11kd2ll2a3y524noj1e5ydmbuyf.png)
2.
![x^2-18x+81](https://img.qammunity.org/2023/formulas/mathematics/high-school/jejon9brs7a7a1gvq6r1gw78nan7xd6x7q.png)
..................................................................................................................................................
When factoring trinomials of the form ax² + bx + c:
- Multiply the leading coefficient and the last term.
- Find the product factors that add up to give you the coefficient of the middle term.
- Rewrite the polynomial with those factors replacing the middle term.
..................................................................................................................................................
1) x² + 11x + 24
Step 1: Multiply the leading coefficient (1) and the last term (24).
![\implies 1 * 24 = \boxed{24}](https://img.qammunity.org/2023/formulas/mathematics/high-school/o774rcs1etz9bmb58k04le02sq6jlqquvu.png)
Step 2: Find the product factors that sum up to the middle term's coefficient (11).
![\begin{array} c \cline{1-2} \sf Factors\:of\:24 & \sf Sum\:of\:factors\\\cline{1-2} 1, 24\ \| -1, -24 & 25\ \| -25 \\\cline{1-2} 2, 12\ \| -2, -12 & 14\ \| -14 \\ \cline{1-2} 3, 8\ \| -3, -8 & 11\ \| -11 \\\cline{1-2} 4, 6 \ \| -4, -6 & 10\ \| -10 \\\cline{1-2}\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/otkpe75q0xnf9uld5rdzv5bzejxg5iat7x.png)
![\implies 3x+8x=11x](https://img.qammunity.org/2023/formulas/mathematics/high-school/bxxepl8x9rfmmdjtyllfq1y9luy7oa70ur.png)
Step 3: Rewrite the polynomial with those factors, replacing the middle term.
![\implies x^2+3x+8x+24](https://img.qammunity.org/2023/formulas/mathematics/high-school/tcifusr7lelcih5iqxna4byqioc8lwckqp.png)
Step 4: Factor by grouping.
![\implies \overbrace{(x^2+3x)}^x+\overbrace{(8x+24)}^8\ \ \textsf{[ Factor out $x$ and $8$. ]}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wn8snd7jcze71psmto2a48sg9ju4caj8e3.png)
![\implies x\overbrace{(x+3)}^{\textsf {Factor out}}+8(x+3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/52880ydy5l1pjfygxb1fjfs2ripmcmkvnd.png)
![\implies \boxed{(x+8)(x+3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jmo5npyqxpudy0vegn614en1mucn2pifnt.png)
The factored form of the given trinomial is
.
..................................................................................................................................................
2) x² - 18x + 81
Step 1: Multiply the leading coefficient (1) and the last term (81).
![\implies 1 * 81 = \boxed{81}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zylg8vwraibh083e4wqwe70rupjx2nfv1w.png)
Step 2: Find the product factors that sum up to the middle term's coefficient (-18).
![\begin{array}\cline{1-2} \sf Factors\:of\:81 & \sf Sum\:of\:factors\\\cline{1-2} 1, 81\ \| -1, -81 & 81\ \| -81 \\\cline{1-2} 3, 27\ \| -3, -27 & 30\ \| -30 \\ \cline{1-2} 9, 9\ \| -9, -9 & 18\ \| -18 \\\cline{1-2}\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/aaqnj0q8sactrnsvtea4pev15fc90h6hxf.png)
![\implies (-9x)+(-9x)=-18x](https://img.qammunity.org/2023/formulas/mathematics/high-school/iph29fcpd4ze0ck2qeivkl2sii1pdn57yf.png)
Step 3: Rewrite the polynomial with those factors, replacing the middle term.
![\implies x^2-9x-9x+81](https://img.qammunity.org/2023/formulas/mathematics/high-school/n71swlb3oqhgl2jl1zy1uek0q249v3tw9r.png)
Step 4: Factor by grouping.
![\implies \overbrace{(x^2-9x)}^x+\overbrace{(-9x+81)}^(-9)\ \ \textsf{[ Factor out $x$ and $-9$. ]}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fa0iwvh5x0uuusok686hhh4igzoz5skvva.png)
![\implies x\overbrace{(x-9)}^{\textsf {Factor out}}-9(x-9)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9tptpnrmu76r8jcif1yalq4hi1ag6oslmk.png)
![\implies (x-9)(x-9)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6beunei10whpsm7rmwcq80qi1vt0sc2ojy.png)
![\implies \boxed{(x-9)^2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/btua7mb0m2vou7ur74mo96emgth47sufw5.png)
The factored form of the given trinomial is
.