91.0k views
0 votes
Help with these two questions please !!

Help with these two questions please !!-example-1
User Joshualan
by
5.4k points

1 Answer

3 votes

Answer:

1. (x + 8)(x + 3)

2. (x - 9)²

Explanation:

Given trinomials:

1.
x^2+11x+24

2.
x^2-18x+81

..................................................................................................................................................

When factoring trinomials of the form ax² + bx + c:

  • Multiply the leading coefficient and the last term.
  • Find the product factors that add up to give you the coefficient of the middle term.
  • Rewrite the polynomial with those factors replacing the middle term.

..................................................................................................................................................

1) x² + 11x + 24

Step 1: Multiply the leading coefficient (1) and the last term (24).


\implies 1 * 24 = \boxed{24}

Step 2: Find the product factors that sum up to the middle term's coefficient (11).


\begin{array} c \cline{1-2} \sf Factors\:of\:24 & \sf Sum\:of\:factors\\\cline{1-2} 1, 24\ \| -1, -24 & 25\ \| -25 \\\cline{1-2} 2, 12\ \| -2, -12 & 14\ \| -14 \\ \cline{1-2} 3, 8\ \| -3, -8 & 11\ \| -11 \\\cline{1-2} 4, 6 \ \| -4, -6 & 10\ \| -10 \\\cline{1-2}\end{array}


\implies 3x+8x=11x

Step 3: Rewrite the polynomial with those factors, replacing the middle term.


\implies x^2+3x+8x+24

Step 4: Factor by grouping.


\implies \overbrace{(x^2+3x)}^x+\overbrace{(8x+24)}^8\ \ \textsf{[ Factor out $x$ and $8$. ]}


\implies x\overbrace{(x+3)}^{\textsf {Factor out}}+8(x+3)


\implies \boxed{(x+8)(x+3)}

The factored form of the given trinomial is
(x+8)(x+3).

..................................................................................................................................................

2) x² - 18x + 81

Step 1: Multiply the leading coefficient (1) and the last term (81).


\implies 1 * 81 = \boxed{81}

Step 2: Find the product factors that sum up to the middle term's coefficient (-18).


\begin{array}\cline{1-2} \sf Factors\:of\:81 & \sf Sum\:of\:factors\\\cline{1-2} 1, 81\ \| -1, -81 & 81\ \| -81 \\\cline{1-2} 3, 27\ \| -3, -27 & 30\ \| -30 \\ \cline{1-2} 9, 9\ \| -9, -9 & 18\ \| -18 \\\cline{1-2}\end{array}


\implies (-9x)+(-9x)=-18x

Step 3: Rewrite the polynomial with those factors, replacing the middle term.


\implies x^2-9x-9x+81

Step 4: Factor by grouping.


\implies \overbrace{(x^2-9x)}^x+\overbrace{(-9x+81)}^(-9)\ \ \textsf{[ Factor out $x$ and $-9$. ]}


\implies x\overbrace{(x-9)}^{\textsf {Factor out}}-9(x-9)


\implies (x-9)(x-9)


\implies \boxed{(x-9)^2}

The factored form of the given trinomial is
(x-9)(x-9)\ \textsf{or}\ (x-9)^2.

User Jak Hammond
by
5.6k points