Hello!
Let's begin by doing a summation of torques, placing the pivot point at the attachment point of the rod to the wall.
![\Sigma \tau = 0](https://img.qammunity.org/2023/formulas/physics/college/eviza3mgwwagapxso4o0g0c353zw504omx.png)
We have two torques acting on the rod:
- Force of gravity at the center of mass (d = 0.700 m)
- VERTICAL component of the tension at a distance of 'L' (L = 2.200 m)
Both of these act in opposite directions. Let's use the equation for torque:
![\tau = r * F](https://img.qammunity.org/2023/formulas/physics/college/g2fxlvutd50pov849ng1gp920lcn82ubf4.png)
Doing the summation using their respective lever arms:
![0 = L Tsin\theta - dF_g](https://img.qammunity.org/2023/formulas/physics/college/fpyy651at4y059q5ntl4li1307guxq0ls4.png)
![dF_g = LTsin\theta](https://img.qammunity.org/2023/formulas/physics/college/i7te3b5u881c2tfigp3hjt42xp84rtgh3i.png)
Our unknown is 'theta' - the angle the string forms with the rod. Let's use right triangle trig to solve:
![tan\theta = (H)/(L)\\\\tan^(-1)((H)/(L)) = \theta\\\\tan^(-1)((1.70)/(2.200)) = 37.69^o](https://img.qammunity.org/2023/formulas/physics/college/52ivupct4qdoe2peq1p6fvuvesw32vkv1d.png)
Now, let's solve for 'T'.
![T = (dMg)/(Lsin\theta)](https://img.qammunity.org/2023/formulas/physics/college/g9u1inhuexomhsu4lfc170po29l3v1ghgb.png)
Plugging in the values:
![T = ((0.700)(4.00)(9.8))/((2.200)sin(37.69)) = \boxed{20.399 N}](https://img.qammunity.org/2023/formulas/physics/college/wk6lxdspnbp8qcsks807yqmdhxggo5njrm.png)