100k views
0 votes
1!+2(2!)+3(3!)+...+n(n!)=(n+1)!-1






1 Answer

5 votes

Explanation:

OK, let's assume it this way:

Sn=1.1!+2.2!+3.3!+...+n.n!=(21).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!

Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!=(2.1!-1!)+(3.2!-2!)+(4.3!-3!)+...+((n-1)n!-n!)=(2!-1!)+(3!-2!)+(4!-3!)+

Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!=(2.1!-1!)+(3.2!-2!)+(4.3!-3!)+...+((n-1)n!-n!)=(2!-1!)+(3!-2!)+(4!-3!)+...+(n+1)!-n!=(n+1)!-1!=(n+1)!-1

and boom problem solved

User Bgamari
by
3.9k points