162k views
4 votes
How to solve exercise 1

How to solve exercise 1-example-1

1 Answer

4 votes

Answer:


period \: of \: sin(2x) = \pi \\ period \: of \: cos (x)/(4) = 8\pi \\ period \: of \: tan (x)/(3) = 3\pi

Explanation:

Hello !


periodicity \: of \: a.sin(bx + c) + d = \\ (periodicity \: of \: sin(x))/( |b| ) \\ periodicit \: of \: sin \: (x) \: is \: 2\pi = \\ (2\pi)/(2) \: simplify = \pi \\ periodicity \: of \: a.cos(bx + c) = \\ (periodicity \: of \: cos(x))/( |b| ) \\ periodicit \: of \: cos \: (x)is \: 2\pi = \\ (2\pi)/(1(1)/(4) ) \: simplify \: = 8\pi \\ periodicity \: of \: a.tan(bx + c) = \\ (periodicity \: of \: tan(x))/( |b| ) \\ periodicity \: of \: tan(x) \: is \: \pi \\ \frac{\pi}{} (1)/(3)

User Lineesh K Mohan
by
3.4k points