a) The z-value associated with 25.0
Z = 1.25
b) proportion of the population is between 20.0 and 25.0 is
Proportion = 0.3944
c) proportion of the population is less than 18.0 is
Proportion = 0.3085
Calculations:
Normal pop has mean of 20.0
standard deviation = 4.0
XNN(20.0, 4.0)
a).
![z=(x-h)/(z)](https://img.qammunity.org/2023/formulas/mathematics/college/k94gv06wj1w6nz2srp47qv8x29izjh8sjd.png)
![=(25-20)/(4.0) =(5)/(4) =1.25](https://img.qammunity.org/2023/formulas/mathematics/college/zr0pnwtt35uxb6z1qfwptutye1hhmg3iv4.png)
Z = 1.25
b).
The proportion between 20 and 25 is P(20 <x<25.0)
![=p((20-20)/(4) < z < (25-0)/(4) )](https://img.qammunity.org/2023/formulas/mathematics/college/duvepv0qyrpffk7fhn2yyhsfb026jg2653.png)
![=P(0 < z < 1.25)](https://img.qammunity.org/2023/formulas/mathematics/college/5tm2x805h8dlv77y4fgtxjvxjxmcjufv7j.png)
![=P(Z < 1.25)-P(z < 0)](https://img.qammunity.org/2023/formulas/mathematics/college/owpdn7xidmu1mtmc4r0bh7za8mza9s1tuy.png)
![=0.8944-0.5000](https://img.qammunity.org/2023/formulas/mathematics/college/avin5u6ivbjloqgxdi4c99i4othg7ysjl1.png)
P(20 < x < 25)=0.3944
c).
The proportion value is less than 18 when
![P(x < 18)=p((x--4)/(6) < (18-20)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/pv55uh0tmpplvuxh20z5yujx5ii7xqnror.png)
![=P(z < (-2)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/srr22dmlgudqtdaeuu0b6b6taljjmvcszk.png)
![=P(z < -0.5)](https://img.qammunity.org/2023/formulas/mathematics/college/h1t19v7etszz9rapfaqyk66ejptr42bvwn.png)
P(x<18) = 0.3085