405,292 views
45 votes
45 votes
Plz solve this question​

Plz solve this question​-example-1
User Qwer
by
3.0k points

1 Answer

22 votes
22 votes


\huge \boxed{\mathbb{QUESTION} \downarrow}

  • Simplify ⇨ 1/x(x+a) + 1/x(x-a)


\large \boxed{\mathbb{ANSWER \: WITH \: EXPLANATION} \downarrow}


\sf\frac { 1 } { x ( x + a ) } + \frac { 1 } { x ( x - a ) } \\

To add or subtract expressions, expand them to make their denominators the same. Least common multiple of
x\left(x+a\right) and
x\left(x-a\right) is
x\left(x+a\right)\left(x-a\right). Multiply
(1)/(x\left(x+a\right)) times (x-a)/(x-a). Multiply
(1)/(x\left(x-a\right)) times (x+a)/(x+a).


\sf(x-a)/(x\left(x+a\right)\left(x-a\right))+(x+a)/(x\left(x+a\right)\left(x-a\right)) \\

Because
(x-a)/(x\left(x+a\right)\left(x-a\right)) and
(x+a)/(x\left(x+a\right)\left(x-a\right)) have the same denominator, add them by adding their numerators.


\sf(x-a+x+a)/(x\left(x+a\right)\left(x-a\right)) \\

Combine like terms in x-a+x+a.


\sf(2x)/(x\left(x+a\right)\left(x-a\right)) \\

Cancel out x in both the numerator and denominator.


\sf(2)/(\left(x+a\right)\left(x-a\right)) \\

Expand
\left(x+a\right)\left(x-a\right).


\boxed{\boxed{ \bf(2)/(x^(2)-a^(2))}} \\

User Nikolay Popov
by
2.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.