159k views
20 votes
Find an​ nth-degree polynomial function with real coefficients satisfying the given conditions. If you are using a graphing​ utility, use it to graph the function and verify the real zeros and the given function value.

n=3
4 and 4i are zeros;
f(-1)=85

F(x) = ________

User Tamato
by
3.9k points

1 Answer

4 votes

Givem that at n = 3: 4 and 4i are zero;

Then;


(x - 4)(x - 4i)(x + 4i) \: (x - 4)( {x}^(2) - ( {4i)}^(2) \\ (x - 4)(x - 4i)(x + 4i) \: (x - 4)( {x}^(2) + 16) \\ (x - 4)(x - 4i)(x + 4i) \: {x}^(3) + 16x - {4x}^(2) - 64 \\ (x - 4)(x - 4i)(x + 4i) \: {x}^(3) - {4x}^(2) + 16x - 64

Hence the function is:


f = {x}^(3) - {4x}^(2) + 16x - 64