Answer:
(3,4)
Explanation:
Find the equation of BH. (x+3)/(9/11+3)=(y-1)/(4/11-1)
(x+3)/(42/11)= (y-1)/(-7/11)
(x+3)*11/42= (y-1)*11/-7
x+3= -6(y-1)
x+3=-6y+6
y=-1/6x+1/2
m1=-1/6
AC: y=m2x+b
m1*m2=-1 (for perpendicular lines)
-1/6m2=-1
m2=6
-2=6*2+b
b=-14
y=6x-14
Find CH
(x-2)/(9/11-2)= (y+2)/(4/11+2)
(x-2)/(-13/11)= (y+2)/26/11
(x-2)*-11/13=(y+2)*11/26
(x-2)(-2)=y+2
-2x+4=y+2
y=-2x+2
m3=-2
AB: y=m4x+b
m3*m4=-1
-2*m4=-1
m4=0.5
Take the point B from AB
1=-3*0.5+b
b=2.5
y=0.5x+2.5
A is the point of intersection of two linesAB and AC
We have simultaneous equations
y=6x-14
y=0.5x+2.5
6x-14=0.5x+2.5
5.5x=16.5
x=3
y=6*3-14=4