Answer:
x = 132°
Explanation:
ΔAOC is an isosceles triangle as OC = OA ----> RADIUS
42 + 42 + ∠AOC = 180 {Angle sum property}
84 + ∠AOC = 180
∠AOC = 180 - 84
∠AOC = 96°
y = 96/2 {Central angle theorem}
y = 48° ------------(I)
∠B + ∠D = 180 {sum of opposite angles of Cyclic Quadrilateral}
x + y = 180
x + 48 = 180 {from (I) }
x = 180 - 48
x = 132°