510,036 views
14 votes
14 votes
Perform the indicated operations. Write the answer in standard form, a+bi.
5-3i / -2-9i

User Shenxian
by
2.7k points

1 Answer

15 votes
15 votes


\huge \boxed{\mathfrak{Answer} \downarrow}


\large \bf\frac { 5 - 3 i } { - 2 - 9 i } \\

Multiply both numerator and denominator of
\sf (5-3i)/(-2-9i) \\ by the complex conjugate of the denominator, -2+9i.


\large \bf \: Re((\left(5-3i\right)\left(-2+9i\right))/(\left(-2-9i\right)\left(-2+9i\right))) \\

Multiplication can be transformed into difference of squares using the rule:
\sf\left(a-b\right)\left(a+b\right)=a^(2)-b^(2).


\large \bf \: Re((\left(5-3i\right)\left(-2+9i\right))/(\left(-2\right)^(2)-9^(2)i^(2))) \\

By definition, i² is -1. Calculate the denominator.


\large \bf \: Re((\left(5-3i\right)\left(-2+9i\right))/(85)) \\

Multiply complex numbers 5-3i and -2+9i in the same way as you multiply binomials.


\large \bf \: Re((5\left(-2\right)+5* \left(9i\right)-3i\left(-2\right)-3* 9i^(2))/(85)) \\

Do the multiplications in
\sf5\left(-2\right)+5* \left(9i\right)-3i\left(-2\right)-3* 9\left(-1\right).


\large \bf \: Re((-10+45i+6i+27)/(85)) \\

Combine the real and imaginary parts in -10+45i+6i+27.


\large \bf \: Re((-10+27+\left(45+6\right)i)/(85)) \\

Do the additions in
\sf-10+27+\left(45+6\right)i.


\large \bf Re((17+51i)/(85)) \\

Divide 17+51i by 85 to get
\sf(1)/(5)+(3)/(5)i \\.


\large \bf \: Re((1)/(5)+(3)/(5)i) \\

The real part of
\sf (1)/(5)+(3)/(5)i \\ is
\sf (1)/(5) \\.


\large \boxed{\bf(1)/(5) = 0.2} \\

User Thaweatherman
by
2.9k points