324,087 views
13 votes
13 votes
2. Given that tan 25º = a, express each of the following in terms of a.

tan 205

sin 25°

cos 65

cos 245

User Gemantzu
by
2.3k points

1 Answer

18 votes
18 votes

9514 1404 393

Answer:

  • tan(205°) = a
  • sin(25°) = (a√(a²+1))/(a²+1)
  • cos(65°) = (a√(a²+1))/(a²+1)
  • cos(245°) = -(a√(a²+1))/(a²+1)

Explanation:

The tangent function is periodic with a period of 180°. So ...

tan(205°) = tan(25°) = a

__

The identity relating sine and tangent is ...

sin(x) = tan(x)/√(tan²(x)+1)

Rationalizing the denominator gives ...

sin(x) = tan(x)√(tan²(x)+1)/(tan²(x)+1)

sin(25°) = a√(a²+1)/(a²+1)

__

cos(65°) = sin(25°) = a√(a²+1)/(a²+1)

__

cos(245°) = -sin(25°) = -a√(a²+1)/(a²+1)

User Saeedgnu
by
3.3k points