9514 1404 393
Answer:
- tan(205°) = a
- sin(25°) = (a√(a²+1))/(a²+1)
- cos(65°) = (a√(a²+1))/(a²+1)
- cos(245°) = -(a√(a²+1))/(a²+1)
Explanation:
The tangent function is periodic with a period of 180°. So ...
tan(205°) = tan(25°) = a
__
The identity relating sine and tangent is ...
sin(x) = tan(x)/√(tan²(x)+1)
Rationalizing the denominator gives ...
sin(x) = tan(x)√(tan²(x)+1)/(tan²(x)+1)
sin(25°) = a√(a²+1)/(a²+1)
__
cos(65°) = sin(25°) = a√(a²+1)/(a²+1)
__
cos(245°) = -sin(25°) = -a√(a²+1)/(a²+1)