Answer:
(a)
sin²A×cos²A+sin⁴A
we will take sin²A as an common factor
so it become
sin²A×(cos²A+sin²A)
sin²A+cos²A=1
sin²A×1=sin²A
(c)
sinA×cotA
cotA= cosA/sinA
sinA×cosA/sinA=cosA
(e)
(1+sinA)²-(1-sinA)²
(a+b)²=a²+b²+2×a×b
(a-b)²=a²+b²-2×a×b
1²+sin²A+2×1×sinA-(1²+sin²A-2×1×sinA)
1+sin²A+2sinA-1-sin²A+2sinA=4sinA
(g)
(cosec²A-1)/cosec²A
cosecA=1/sinA
1/sin²A-1/1/sin²A
(1/sin²A-1)×sin²A
1-sin²A
1=sin²A+cos²A
sin²A+cos²A-sin²A=cos²A
(i)
sqrt(1+tan²A)×sqrt(1-cos²A)
1+tan²A=
1+sin²A/cos²A=
sin²A+cos²A/cos²A
sin²A+cos²A=1
=1/cos²A
1-cos²A
1=sin²A+cos²A
sin²A+cos²A-cos²=sin²A
sqrt(1/cos²A)×sqrt(sin²A)
1/cosA×sinA=sinA/cosA=tanA
have a great day