Answer:
35 degrees
Explanation:
for all positive angles less than 360°, if csc (2x+30°)= cos (3y-15°), the sum of x and y is?
Let the given expression be equal to 1, hence;
csc (2x+30°)= cos (3y-15°) = 1
csc (2x+30°) = 1
1/sin(2x+30) = 1
1 = sin(2x+30)
sin(2x+30) = 1
2x+30 = arcsin(1)
2x+30 = 90
2x = 90-30
2x = 60
x = 60/2
x = 30 degrees
Get the value of y;
cos (3y-15°) = 1
3y - 15 = arccos (1)
3y - 15= 0
3y = 0+15
3y = 15
y = 15/3
y = 5
Sum of x and y;
x+y = 30 + 5
x+y = 35degrees
Hence the sum of x and y is 35 degrees