Answer:
77r - 2077
Explanation:
To find the the sum of (23m−34)( 3 2 m− 4 3 ) and (−16m−r)(− 6 1 m−r)
First open the bracket
23m × 32m - 23m × 43 - 34 × 32m + 34 × 43
736m^2 - 989m - 1088m + 1462
736m^2 - 2077m + 1462
Open the second bracket
16m × 61m + 16m × r + r × 61m + r × r
976m^2 + 16mr + 61mr + r^2
976m^2 + 77mr + r^2
Adding both equations together
736m^2 - 2077m + 1462 + 976m^2 + 77mr + r^2
1712m^2 + 77mr - 2077m + 1462 + r^2
1712m^2 + m( 77r - 2077 ) + 1462 + r^2
Therefore The coefficient of m is 77r - 2077