269,546 views
45 votes
45 votes
SOLVE PLEASE! (Help)

SOLVE PLEASE! (Help)-example-1
User Sanket Thakkar
by
3.1k points

1 Answer

17 votes
17 votes

Answer:

1.
√(218)

2.
√(89)

3.
2√(17)

Explanation:

The formula to find the distance between any two points on a coordinate plane is as follows:


D=√((x_1-x_2)^2+(y_1-y_2)^2)

Where (
(x_1,y_1)) and (
(x_2,y_2)) are the two points one is trying to find the distance between. Substitute the points in and solve for the distance between them for each respective problem.

1.

Points:
(-4, 6),\ \ (3, -7)

Substitute into the formula,


D=√((x_1-x_2)^2+(y_1-y_2)^2)


D=√(((-4)-(3))^2+((6)-(-7))^2)

Simplify,


D=√(((-4)-(3))^2+((6)-(-7))^2)


D=√((-4-3)^2+(6+7)^2)


D=√((-7)^2+(13)^2)


D=√(49+169)


D=√(218)

2.

Points:
(-6, -5)\ \ (2,0)

Substitute into the formula,


D=√((x_1-x_2)^2+(y_1-y_2)^2)


D=√(((-6)-(2))^2+((-5)-(0))^2)

Simplify,


D=√(((-6)-(2))^2+((-5)-(0))^2)


D=√((-6-2)^2+(-5-0)^2)


D=√((-8)^2+(-5)^2)


D=√(64+25)


D=√(89)

3.

Points:
(-1, 4)\ \ (1,-4)

Substitute into the formula,


D=√((x_1-x_2)^2+(y_1-y_2)^2)


D=√(((-1)-(1))^2+((4)-(-4))^2)

Simplify,


D=√(((-1)-(1))^2+((4)-(-4))^2)


D=√((-1-1)^2+(4+4)^2)


D=√((-2)^2+(8)^2)


D=√(4+64)


D=√(68)


D=2√(17)

User Damon Bauer
by
3.4k points