83.8k views
3 votes
Differentiate (Tanx)÷(2cosx)​

User Eiko
by
5.3k points

1 Answer

5 votes

Answer:


\displaystyle (d)/(dx) = (sin^2x + 1)/(2cos^3x)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Pre-Calculus

  • Trigonometric Functions

Calculus

Derivatives

Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Trig Derivative:
\displaystyle (d)/(dx)[tanu] = u'sec^2u

Trig Derivative:


\displaystyle (d)/(dx)[cosu] = -u'sinu

Explanation:

Step 1: Define


\displaystyle y = (tanx)/(2cosx)

Step 2: Differentiate

  1. [Derivative] Quotient Rule:
    \displaystyle (d)/(dx) = ((d)/(dx)[tanx](2cosx) - (d)/(dx)[2cosx](tanx))/((2cosx)^2)
  2. [Derivative] Simplify [Derivative Property - Multiplied Constant]:
    \displaystyle (d)/(dx) = ((d)/(dx)[tanx](2cosx) - 2(d)/(dx)[cosx](tanx))/((2cosx)^2)
  3. [Derivative] Evaluate [Trig Derivatives]:
    \displaystyle (d)/(dx) = (sec^2x(2cosx) - (-2sinx)(tanx))/((2cosx)^2)
  4. [Derivative] Evaluate exponents:
    \displaystyle (d)/(dx) = (sec^2x(2cosx) - (-2sinx)(tanx))/(4cos^2x)
  5. [Derivative] Multiply:
    \displaystyle (d)/(dx) = (2secx + (2sin^2x)/(cosx))/(4cos^2x)
  6. [Derivative] Add:
    \displaystyle (d)/(dx) = ((2sin^2x + 2)/(cosx))/(4cos^2x)
  7. [Derivative] Divide:
    \displaystyle (d)/(dx) = (sin^2x + 1)/(2cos^3x)

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

User Victoria Klimova
by
5.9k points