421,754 views
21 votes
21 votes
Find hyperbola equation. center (0,0) vertex (-2,0) focus (-5,0)

User Danny Connolly
by
3.0k points

1 Answer

25 votes
25 votes


\frac{ {x}^(2) }{4} - \frac{ {y}^(2) }{21} = 1


\frac{(x - h)^(2) }{ {a}^(2) } - \frac{(y - k) ^(2) }{ {b}^(2) } = 1 \\

a= (–2, 0) ; Center =(0,0)


distance = \sqrt{(x2 - x1)^(2) + (y2 - y1) ^(2) } \\ a = \sqrt{(( - 2) - 0)^(2) + (0 - 0) ^(2) } \\ a = \sqrt{ {2}^(2) } \\ a = 2

C = (–5,0) ; Center =(0,0)


distance = \sqrt{(x2 - x1) ^(2) + (y2 - y1) ^(2) } \\ c = \sqrt{(( - 5) - 0)^(2) + (0 - 0) ^(2) } \\ c = \sqrt{ {5}^(2) } \\ c = 5

C²= a²+ b²

(5)²= (2)² + b²

b²= 25–4 —> b² = 21


b = + √(21) , - √(21)


m = (y2 - y1)/(x2 - x1) = (0 - 0)/(0 - ( -5 )) = 0


\frac{(x - h)^(2) }{ {a}^(2) } - \frac{(y - k) ^(2) }{ {b}^(2) } = 1 \\


\frac{(x - 0)^(2) }{ {2}^(2) } - \frac{(y - 0) ^(2) }{ { √(2) }^(2) } = 1 \\


\frac{ {x}^(2) }{4} - \frac{ {y}^(2) }{21} = 1

I hope I helped you^_^

User Andrew Durward
by
3.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.