259,003 views
20 votes
20 votes
Prove that:
Sin^2A+Sin^2B.Cos2A=Sin^2B+Sin^2A.Cos2B​

User Doplumi
by
3.2k points

1 Answer

20 votes
20 votes

Answer:

See Below.

Explanation:

We want to prove that:


\displaystyle \sin^2 A + \sin^2 B \cdot \cos 2A = \sin^2 B + \sin^2 A \cdot \cos 2B

Recall that double-angle identity for cosine:


\displaystyle \begin{aligned} \cos 2x &= \cos^2x - \sin^2 x \\ &= 2\cos^2x -1 \\ &= 1 - 2\sin^2 x\end{aligned}

Substitute cos(2A) for its third form:


\displaystyle \sin^2 A + \sin^2 B \cdot \left(1 - 2\sin^2 A\right) = \sin^2 B + \sin^2 A \cdot \cos 2B

Distribute:


\displaystyle \sin^2 A + \sin^2 B - 2\sin^2B \sin^2A = \sin^2 B + \sin^2 A \cdot \cos 2B

Rewrite:


\displaystyle \sin^2 B + \left(\sin^2 A - 2\sin^2 B\sin^2 A\right)

Factor:


\displaystyle \sin^2 B + \sin^2A\left(1 - 2\sin^2 B\right) = \sin^2 B + \sin^2A\cdot \cos 2B

Double-Angle Identity for cosine:


\displaystyle \sin^2 B + \sin^2 A \cdot \cos 2B \stackrel{\checkmark}{=} \sin ^2 B + \sin^2 A\cdot \cos 2B

Hence proven.

User D Ie
by
2.9k points