247,462 views
38 votes
38 votes
Let a=⟨1,−4,2⟩ and b=⟨−5,−5,−2⟩. Compute:

a+b=⟨ ,, ⟩
a−b=⟨ ,,⟩
2a=⟨ ,,⟩
3a+4b=⟨ ,, ⟩
|a|=

Let a=⟨1,−4,2⟩ and b=⟨−5,−5,−2⟩. Compute: a+b=⟨ ,, ⟩ a−b=⟨ ,,⟩ 2a=⟨ ,,⟩ 3a+4b=⟨ ,, ⟩ |a-example-1
User FSm
by
3.2k points

1 Answer

21 votes
21 votes

Answer:

a + b = ⟨-4, -9, 0⟩

a - b = ⟨6, 1, 4⟩

2a = ⟨2, -8, 4⟩

3a + 4b = ⟨-17, -32, -2⟩

|a| = √21

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Pre-Calculus

Vectors

  • Operations
  • Scalars
  • [Magnitude] ||v|| = √(x² + y² + z²)

Explanation:

Adding and subtracting vectors are follow the similar pattern of normal order of operations:

a + b = ⟨1 - 5, -4 - 5, 2 - 2⟩ = ⟨-4, -9, 0⟩

a - b = ⟨1 + 5, -4 + 5, 2 + 2⟩ = ⟨6, 1, 4⟩

Scalar multiplication multiplies each component:

2a = ⟨2(1), 2(-4), 2(2)⟩ = ⟨2, -8, 4⟩

Remember to multiply in the scalar before doing basic operations:

3a + 4b = ⟨3(1), 3(-4), 3(2)⟩ + ⟨4(-5), 4(-5), 4(-2)⟩ = ⟨3, -12, 6⟩ + ⟨-20, -20, -8⟩ = ⟨-17, -32, -2⟩

Absolute values surrounding a vector signifies magnitude of a vector. Follow the formula:

|a| = √[1² + (-4)² + 2²] = √21

User HaNdTriX
by
2.6k points