195,035 views
15 votes
15 votes
Two tangents drawn to a circle from a point outside it, are equal in length.prove it.


User Shahar Shokrani
by
2.9k points

1 Answer

19 votes
19 votes
Given: A circle with centre O; PA and PB are two tangents to the circle drawn from an external point P.
To prove: PA = PB
Construction: Join OA, OB, and OP.
It is known that a tangent at any point of a circle is perpendicular to the radius through the point of contact.
OA⊥PA
OB⊥PB
In △OPA and △OPB
∠OPA=∠OPB (Using (1))
OA=OB (Radii of the same circle)
OP=OP (Common side)
Therefor △OPA≅△OPB (RHS congruency criterion)
PA=PB
(Corresponding parts of congruent triangles are equal)
Thus, it is proved that the lengths of the two tangents drawn from an external point to a circle are equal.
The length of tangents drawn from any external point are equal.
So statement is correct
Two tangents drawn to a circle from a point outside it, are equal in length.prove-example-1
User AndersTornkvist
by
3.1k points