6,158 views
18 votes
18 votes
Let A^=6i^+4j^_2k^ and B= 2i^_2j^+3k^. find the sum and difference of A and B​

User DennisLi
by
2.8k points

1 Answer

16 votes
16 votes

Step-by-step explanation:

Let
\textbf{A} = 6\hat{\textbf{i}} + 4\hat{\textbf{j}} - 2\hat{\textbf{k}} and
\textbf{B} = 2\hat{\textbf{i}} - 2\hat{\textbf{j}} + 3\hat{\textbf{k}}

The sum of the two vectors is


\textbf{A + B} = (6 + 2)\hat{\textbf{i}} + (4 - 2)\hat{\textbf{j}} + (-2 + 3)\hat{\textbf{k}}


= 8\hat{\textbf{i}} + 2\hat{\textbf{j}} + \hat{\textbf{k}}

The difference between the two vectors can be written as


\textbf{A - B} = (6 - 2)\hat{\textbf{i}} + (4 - (-2))\hat{\textbf{j}} + (-2 - 3)\hat{\textbf{k}}


= 4\hat{\textbf{i}} + 6\hat{\textbf{j}} - 5\hat{\textbf{k}}

User Yurkol
by
2.8k points