289,230 views
35 votes
35 votes
, , and angle x and angle y are both in the first quadrant.

User Ahsan Rathod
by
2.6k points

1 Answer

19 votes
19 votes

Answer:


\tan(x+y) = 3.73

Step-by-step explanation:

The missing part of the question are:


\sin(x) = (1)/(2)


\cos(y) = (\sqrt 2)/(2)

Required


\tan(x + y)

First, we calculate
\sin(y) and
\cos(x)

We have:


\sin^2(x) + \cos^2(x) = 1

So:


(1/2)^2 + \cos^2(x) = 1

Collect like terms


\cos^2(x) = 1 - (1/2)^2


\cos^2(x) = 1 - (1)/(4)

Take LCM


\cos^2(x) = (4-1)/(4)


\cos^2(x) = (3)/(4)

Square roots of both sides


\cos(x) = (\sqrt 3)/(2)

Similarly,


\sin^2(y) + \cos^2(y) = 1

So:


\sin^2(y)+(\sqrt 2/2)^2 = 1


\sin^2(y)+ (2/4) = 1


\sin^2(y)+1/2 = 1

Collect like terms


\sin^2(y) = 1 - 1/2

Take LCM


\sin^2(y) = (2 -1)/(2)


\sin^2(y) = (1)/(2)

Square roots of both sides


\sin(y) = (1)/(\sqrt2)

Rationalize


\sin(y) = (\sqrt2)/(2)

So, we have:


\sin(x) = (1)/(2)
\cos(x) = (\sqrt 3)/(2)


\cos(y) = (\sqrt 2)/(2)
\sin(y) = (\sqrt2)/(2)


\tan(x) = \sin(x) / \cos(x)


\tan(x) = (1)/(2) / (\sqrt 3)/(2)

Rewrite as:


\tan(x) = (1)/(2) * (2)/(\sqrt 3)


\tan(x) = (1)/(\sqrt 3)

Rationalize


\tan(x) = (\sqrt 3)/(3)

Similarly


\tan(y) = \sin(y) / \cos(y)


\tan(y) = (\sqrt 2)/(2) / (\sqrt 2)/(2)


\tan(y) = 1

Lastly,


\tan(x + y)= (\tan(x) + \tan(y))/(1 - \tan(x) \cdot \tan(y))


\tan(x + y)= ((\sqrt3)/(3) + 1)/(1 - (\sqrt3)/(3) \cdot 1)


\tan(x + y)= ((\sqrt3)/(3) + 1)/(1 - (\sqrt3)/(3))

Combine fractions


\tan(x + y)= ((\sqrt3+3)/(3))/((3 - \sqrt3)/(3))

Cancel out 3


\tan(x + y)= (\sqrt3+3)/(3 - \sqrt3)

Using a calculator


\tan(x+y) = 3.73

User Emil Oberg
by
3.2k points