59,914 views
35 votes
35 votes
The equation a
x^(2)+b
x+c=0 has roots α, β. Express (α+1)(β+1) in terms of a, b and c.

User Outluch
by
2.8k points

1 Answer

22 votes
22 votes

Answer:


\displaystyle \left(\alpha+1\right)\left(\beta + 1\right) = (a+c-b)/(a)\:\: \left(\text{ or } 1+(c-b)/(a)\right)

Explanation:

We are given the equation:


ax^2+bx+c=0

Which has roots α and β.

And we want to express (α + 1)(β + 1) in terms of a, b, and c.

From the quadratic formula, we know that the two solutions to our equation are:


\displaystyle x_1 = (-b+√(b^2-4ac))/(2a)\text{ and } x_2=(-b-√(b^2-4ac))/(2a)

Let x₁ = α and x₂ = β. Substitute:


\displaystyle \left((-b+√(b^2-4ac))/(2a) + 1\right) \left((-b-√(b^2-4ac))/(2a)+1\right)

Combine fractions:


\displaystyle =\left((-b+2a+√(b^2-4ac))/(2a) \right) \left((-b+2a-√(b^2-4ac))/(2a)\right)

Rewrite:


\displaystyle = (\left(-b+2a+√(b^2-4ac)\right)\left(-b+2a-√(b^2-4ac)\right))/((2a)(2a))

Multiply and group:


\displaystyle = (((-b+2a)+√(b^2-4ac))((-b+2a)-√(b^2-4ac)))/(4a^2)

Difference of two squares:


\displaystyle = \frac{\overbrace{(-b+2a)^2 - (√(b^2-4ac))^2}^((x+y)(x-y)=x^2-y^2)}{4a^2}

Expand and simplify:


\displaystyle = ((b^2-4ab+4a^2)-(b^2-4ac))/(4a^2)

Distribute:


\displaystyle = ((b^2-4ab+4a^2)+(-b^2+4ac))/(4a^2)

Cancel like terms:


\displaystyle = (4a^2+4ac-4ab)/(4a^2)

Factor:


\displaystyle =(4a(a+c-b))/(4a(a))

Cancel. Hence:


\displaystyle = (a+c-b)/(a)\:\: \left(\text{ or } 1+(c-b)/(a)\right)

Therefore:


\displaystyle \left(\alpha+1\right)\left(\beta + 1\right) = (a+c-b)/(a)

User Pudgeball
by
3.5k points