Answer:
x=1
Explanation:
log_4(x + 3) + log_4x = 1
We know that loga(b) + loga(c) = loga(bc)
log_4(x + 3)x = 1
Raise each side to the base of 4
4^log_4(x + 3)x = 4^1
(x+3)x = 4
x^2 +3x = 4
Subtract 4 from each side
x^2 +3x -4 = 0
Factor
(x+4) (x-1) =0
Using the zero product property
x= -4 x=1
But x cannot be negative since logs cannot be negative
x=1