48,730 views
12 votes
12 votes
Describe the steps to dividing imaginary numbers and complex numbers with two terms in the denominator?

User Kelly Cook
by
2.6k points

1 Answer

11 votes
11 votes

Answer:

Let be a rational complex number of the form
z = (a + i\,b)/(c + i\,d), we proceed to show the procedure of resolution by algebraic means:

1)
(a + i\,b)/(c + i\,d) Given.

2)
(a + i\,b)/(c + i\,d) \cdot 1 Modulative property.

3)
\left((a+i\,b)/(c + i\,d) \right)\cdot \left((c-i\,d)/(c-i\,d) \right) Existence of additive inverse/Definition of division.

4)
((a+i\,b)\cdot (c - i\,d))/((c+i\,d)\cdot (c - i\,d))
(x)/(y)\cdot (w)/(z) = (x\cdot w)/(y\cdot z)

5)
(a\cdot (c-i\,d) + (i\,b)\cdot (c-i\,d))/(c\cdot (c-i\,d)+(i\,d)\cdot (c-i\,d)) Distributive and commutative properties.

6)
(a\cdot c + a\cdot (-i\,d) + (i\,b)\cdot c +(i\,b) \cdot (-i\,d))/(c^(2)-c\cdot (i\,d)+(i\,d)\cdot c+(i\,d)\cdot (-i\,d)) Distributive property.

7)
(a\cdot c +i\,(-a\cdot d) + i\,(b\cdot c) +(-i^(2))\cdot (b\cdot d))/(c^(2)+i\,(c\cdot d)+[-i\,(c\cdot d)] +(-i^(2))\cdot d^(2)) Definition of power/Associative and commutative properties/
x\cdot (-y) = -x\cdot y/Definition of subtraction.

8)
((a\cdot c + b\cdot d) +i\cdot (b\cdot c -a\cdot d))/(c^(2)+d^(2)) Definition of imaginary number/
x\cdot (-y) = -x\cdot y/Definition of subtraction/Distributive, commutative, modulative and associative properties/Existence of additive inverse/Result.

Explanation:

Let be a rational complex number of the form
z = (a + i\,b)/(c + i\,d), we proceed to show the procedure of resolution by algebraic means:

1)
(a + i\,b)/(c + i\,d) Given.

2)
(a + i\,b)/(c + i\,d) \cdot 1 Modulative property.

3)
\left((a+i\,b)/(c + i\,d) \right)\cdot \left((c-i\,d)/(c-i\,d) \right) Existence of additive inverse/Definition of division.

4)
((a+i\,b)\cdot (c - i\,d))/((c+i\,d)\cdot (c - i\,d))
(x)/(y)\cdot (w)/(z) = (x\cdot w)/(y\cdot z)

5)
(a\cdot (c-i\,d) + (i\,b)\cdot (c-i\,d))/(c\cdot (c-i\,d)+(i\,d)\cdot (c-i\,d)) Distributive and commutative properties.

6)
(a\cdot c + a\cdot (-i\,d) + (i\,b)\cdot c +(i\,b) \cdot (-i\,d))/(c^(2)-c\cdot (i\,d)+(i\,d)\cdot c+(i\,d)\cdot (-i\,d)) Distributive property.

7)
(a\cdot c +i\,(-a\cdot d) + i\,(b\cdot c) +(-i^(2))\cdot (b\cdot d))/(c^(2)+i\,(c\cdot d)+[-i\,(c\cdot d)] +(-i^(2))\cdot d^(2)) Definition of power/Associative and commutative properties/
x\cdot (-y) = -x\cdot y/Definition of subtraction.

8)
((a\cdot c + b\cdot d) +i\cdot (b\cdot c -a\cdot d))/(c^(2)+d^(2)) Definition of imaginary number/
x\cdot (-y) = -x\cdot y/Definition of subtraction/Distributive, commutative, modulative and associative properties/Existence of additive inverse/Result.

User Patz
by
2.7k points