Answer:
348 g
Step-by-step explanation:
The heat gained by the ice equals the heat lost by the hot tea.
Also, since we require a very, very small amount of ice and some water, to still have some ice, the temperature of the hot tea has to decrease to the melting point of ice which is 0°C. So, the final temperature of the mixture is 0 °C.
So, mc(T - T') + mL = -MC(T - T") where m = mass of ice, c = specific heat of ice = 2090 J/kgK., T = final temperature of mixture = 0 °C, T' = initial temperature of ice = -12 °C, L = heat of fusion of H2O = 3.33 × 10⁵ J/kg, M = mass of hot tea = ρV where ρ = density of tea = 1.00 g/mL and V = volume of hot tea = 350 mL. So, M = ρV = 1.00 g/mL × 350 mL = 350 g = 0.350 kg, C = specific heat of tea = 4190 J/kgK and T" = initial temperature of tea = 85 °C.
Making m subject of the formula, we have
mc(T - T') + mL = -MC(T - T")
m[c(T - T') + L] = -MC(T - T")
m = -MC(T - T")/[c(T - T') + L]
substituting the values of the variables into the equation, we have
m = -MC(T - T")/[c(T - T') + L]
m = -0.350 kg × 4190 J/kgK(0 °C - 85 °C.)/[2090 J/kgK(0 °C. - (-12 °C)) + 3.33 × 10⁵ J/kg]
m = -1466.5 J/kK(- 85 °C)/[2090 J/kgK(0 °C + 12 °C)) + 3.33 × 10⁵ J/kg]
m = 124652.5 J/[2090 J/kgK(12 °C) + 3.33 × 10⁵ J/kg]
m = 124652.5 J/[25080 J/kg + 3.33 × 10⁵ J/kg]
m = 124652.5 J/358080 J/kg
m = 0.3481 kg
m = 348.1 g
m ≅ 348 g
So, the minimum amount of ice to be added is 348 g.