100,794 views
27 votes
27 votes
Help with 1 b please. using ln.​

Help with 1 b please. using ln.​-example-1
User Needoriginalname
by
3.1k points

1 Answer

9 votes
9 votes

Answer:


\displaystyle (dy)/(dx) = \frac{1}{(x - 2)^2\sqrt{(x)/(2 - x)}}

General Formulas and Concepts:

Pre-Algebra

  • Equality Properties

Algebra I

  • Terms/Coefficients
  • Factoring
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Algebra II

  • Natural logarithms ln and Euler's number e
  • Logarithmic Property [Exponential]:
    \displaystyle log(a^b) = b \cdot log(a)

Calculus

Differentiation

  • Derivatives
  • Derivative Notation
  • Implicit Differentiation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

*Note:

You can simply just use the Quotient and Chain Rule to find the derivative instead of using ln.

Step 1: Define

Identify


\displaystyle y = \sqrt{(x)/(2 - x)}

Step 2: Rewrite

  1. [Function] Exponential Rule [Root Rewrite]:
    \displaystyle y = \bigg( (x)/(2 - x) \bigg)^\bigg{(1)/(2)}
  2. [Equality Property] ln both sides:
    \displaystyle lny = ln \bigg[ \bigg( (x)/(2 - x) \bigg)^\bigg{(1)/(2)} \bigg]
  3. Logarithmic Property [Exponential]:
    \displaystyle lny = (1)/(2)ln \bigg( (x)/(2 - x) \bigg)

Step 3: Differentiate

  1. Implicit Differentiation:
    \displaystyle (dy)/(dx)[lny] = (dy)/(dx) \bigg[ (1)/(2)ln \bigg( (x)/(2 - x) \bigg) \bigg]
  2. Logarithmic Differentiation [Derivative Rule - Chain Rule]:
    \displaystyle (1)/(y) \ (dy)/(dx) = (1)/(2) \bigg( (1)/((x)/(2 - x)) \bigg) (dy)/(dx) \bigg[ (x)/(2 - x) \bigg]
  3. Chain Rule [Basic Power Rule]:
    \displaystyle (1)/(y) \ (dy)/(dx) = (1)/(2) \bigg( (1)/((x)/(2 - x)) \bigg) \bigg[ (2)/((x - 2)^2) \bigg]
  4. Simplify:
    \displaystyle (1)/(y) \ (dy)/(dx) = (-1)/(x(x - 2))
  5. Isolate
    \displaystyle (dy)/(dx):
    \displaystyle (dy)/(dx) = (-y)/(x(x - 2))
  6. Substitute in y [Derivative]:
    \displaystyle (dy)/(dx) = \frac{-\sqrt{(x)/(2 - x)}}{x(x - 2)}
  7. Rationalize:
    \displaystyle (dy)/(dx) = \frac{-(x)/(2 - x)}{x(x - 2)\sqrt{(x)/(2 - x)}}
  8. Rewrite:
    \displaystyle (dy)/(dx) = \frac{-x}{x(x - 2)(2 - x)\sqrt{(x)/(2 - x)}}
  9. Factor:
    \displaystyle (dy)/(dx) = \frac{-x}{-x(x - 2)^2\sqrt{(x)/(2 - x)}}
  10. Simplify:
    \displaystyle (dy)/(dx) = \frac{1}{(x - 2)^2\sqrt{(x)/(2 - x)}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

User Jjrscott
by
2.6k points