Answer:
a)
AB = 3(sq rt 48) - 5(sq rt 12) + sq rt3
AB = 3(sq rt 16x3) - 5(sq rt 4x3) + sq rt3
AB = 12(sq rt 3) - 10(sq rt 3) + sq rt3
AB = 3(sq rt 3)
b)
AC = (3 - sq rt 6)(3 + sq rt 6)
AC = 9 + 3(sq rt 6) - 3(sq rt 6) -6
AC = 9 - 6
AC = 3
BC = (3 - sq rt 5)^2 + 2(3sq rt 5-4)
BC = 9 - 6sq rt 5m + 5 + 6sq rt 5 - 8
BC = 9 + 5 - 8 = 6
BC = 6
c)
If right triangle, AB^2 + AC^2 = BC^2
(3sq rt 3)^2 + 3^2 = 6^2
27 + 9 = 36
36 = 36