319,308 views
45 votes
45 votes
An electron travelling at 7.72 x 107 m/s [E] enters a force field that reduces its velocity to 2.46 x 107 m/s [E]. The acceleration is constant. The displacement during the acceleration is 0.478 m [E]. Determine (a) the electron’s acceleration (b) the time interval over which the acceleration occurs.

User Abdan Syakuro
by
2.9k points

1 Answer

23 votes
23 votes

Answer:

Acceleration of this electron:
-5.60 * 10^(15)\; \rm m \cdot s^(-2).

Time taken: approximately
9.39 * 10^(-9)\; \rm s.

Step-by-step explanation:

  • Let
    u denote the velocity of this electron before the change.
  • Let
    v denote the velocity of this electron after the change.
  • Let
    x denote the displacement.
  • Let
    a denote the acceleration.
  • Let
    t denote the time taken.

Apply the SUVAT equation that does not involve time:


v^(2) - u^(2) = 2\, a \, x.

Equivalently:


\begin{aligned}a &= (v^(2) - u^(2))/(2\, x)\end{aligned}.

By this equation, the acceleration of this electron would be:


\begin{aligned}a &= (v^(2) - u^(2))/(2\, x) \\ &= ((7.72 * 10^(7)\; \rm m \cdot s^(-1))^(2) - (2.46 * 10^(7) \; \rm m \cdot s^(-1))^(2))/(2 * 0.478\; \rm m) \\ &\approx -5.60 * 10^(15)\; \rm m \cdot s^(-2)\end{aligned}.

The speed of this electron has changed from
u = 7.72 * 10^(7)\; \rm m\cdot s^(-1) to
v = 2.46 * 10^(7)\; \rm m \cdot s^(-1). Calculate the time required to achieve this change at a rate of
a \approx -5.60 * 10^(15)\; \rm m\cdot s^(-2):


\begin{aligned}t &= (v - u)/(a) \\ &\approx (2.46* 10^(7)\; \rm m \cdot s^(-1) - 7.72 * 10^(7)\; \rm m\cdot s^(-1))/(-5.60 * 10^(15)\; \rm m\cdot s^(-2)) \\ &\approx 9.39 * 10^(-9)\; \rm s\end{aligned}.

User Neil Stevens
by
2.9k points