400,639 views
25 votes
25 votes
Use the parametric equations of an ellipse, x=acosθ, y=bsinθ, 0≤θ≤2π , to find the area that it encloses.

User Greenoldman
by
2.3k points

1 Answer

13 votes
13 votes

Answer:

Area of ellipse=
\pi ab

Explanation:

We are given that


x=acos\theta


y=bsin\theta


0\leq\theta\leq 2\pi

We have to find the area enclose by it.


x/a=cos\theta, y/b=sin\theta


sin^2\theta+cos^2\theta=x^2/a^2+y^2/b^2

Using the formula


sin^2x+cos^2x=1


(x^2)/(a^2)+(y^2)/(b^2)=1

This is the equation of ellipse.

Area of ellipse

=
4\int_(0)^(a)(b)/(a)√(a^2-x^2)dx

When x=0,
\theta=\pi/2

When x=a,
\theta=0

Using the formula

Area of ellipse

=
(4b)/(a)\int_(\pi/2)^(0)√(a^2-a^2cos^2\theta)(-asin\theta)d\theta

Area of ellipse=
-4ba\int_(\pi/2)^(0)√(1-cos^2\theta)(sin\theta)d\theta

Area of ellipse=
-4ba\int_(\pi/2)^(0) sin^2\theta d\theta

Area of ellipse=
-2ba\int_(\pi/2)^(0)(2sin^2\theta)d\theta

Area of ellipse=
-2ba\int_(\pi/2)^(0)(1-cos2\theta)d\theta

Using the formula


1-cos2\theta=2sin^2\theta

Area of ellipse=
-2ba[\theta-1/2sin(2\theta)]^(0)_(\pi/2)

Area of ellipse
=-2ba(-\pi/2-0)

Area of ellipse=
\pi ab

User Nickb
by
2.7k points