300,447 views
9 votes
9 votes
(4 + 4i)/(5+4i) = divide

(4 + 4i)/(5+4i) = divide-example-1
User HkBst
by
3.0k points

1 Answer

25 votes
25 votes

Answer:

B.

Explanation:


(4 + 4i)/(5 + 4i)

  • Multiplying both numerator and denominator by (5 - 4i) , the conjugate of the denominator, i. e, (5 + 4i).


(4 + 4i)/(5 + 4i) * (5 - 4i)/(5-4i)


((4 + 4i)(5 - 4i))/((5 + 4i)(5 - 4i))

  • Multiplying (4+4i) and (5-4i) using distributive property
  • Using the identity (a+b)(a-b)= a² - b² where 5 will act as a and 4i will act as b


\frac{20-16i+20i-16i^2}{(5) {}^(2) - (4i) {}^(2) }

  • i² = -1

(combining like terms)


(20+(-16i+20i)-(-16))/(25-(-16))


((20+16)+4i)/(25+16)


(36+4i)/(41)

distributing the denominator


(36)/(41) + (4)/(41)i

That is, option B.

User Kris Van Den Bergh
by
2.9k points