132,887 views
17 votes
17 votes
1 point

Use log10 3-0.4771; log10 5 0.699010810 7 0.8451; log10 11 1.0414 to approximate the value of each expression-
log10 14710910 (147)

User Piglet
by
3.1k points

1 Answer

22 votes
22 votes

Answer:


\log_(10)(147) = 2.1673

Explanation:

Given


\log_(10) 3 = 0.4771


\log_(10) 5 = 0.6990


\log_(10) 7= 0.8451


\log_(10) 11 = 1.0414

Required

Evaluate
\log_(10)(147)

Expand


\log_(10)(147) = \log_(10)(49 * 3)

Further expand


\log_(10)(147) = \log_(10)(7 * 7 * 3)

Apply product rule of logarithm


\log_(10)(147) = \log_(10)(7) + \log_(10)(7) + \log_(10)(3)

Substitute values for log(7) and log(3)


\log_(10)(147) = 0.8451 + 0.8451 + 0.4771


\log_(10)(147) = 2.1673

User Zakria Khan
by
3.3k points