142,972 views
23 votes
23 votes
Date
Prove that sintheta sec theta+costheta cosec theta=
2 cosec 2theta​

User IsHidden
by
3.5k points

1 Answer

11 votes
11 votes

Answer:

See Below.

Explanation:

We want to prove that:


\displaystyle \sin\theta\sec\theta+\cos\theta\csc\theta = 2\csc2\theta

Let secθ = 1 / cosθ and cscθ = 1 / sinθ:


\displaystyle (\sin\theta)/(\cos\theta)+(\cos\theta)/(\sin\theta)=2\csc2\theta

Creat a common denominator. Multiply the first fraction by sinθ and the second by cosθ. Hence:


\displaystyle (\sin^2\theta)/(\sin\theta\cos\theta)+(\cos^2\theta)/(\sin\theta\cos\theta)=2\csc2\theta

Combine fractions:


\displaystyle (\sin^2\theta + \cos^2\theta)/(\sin\theta\cos\theta)=2\csc2\theta

Simplify. Recall that sin²θ + cos²θ = 1:


\displaystyle (1)/(\sin\theta\cos\theta)=2\csc2\theta

Multiply the fraction by two:


\displaystyle (2)/(2\sin\theta\cos\theta)=2\csc2\theta

Recall that sin2θ = 2sinθcosθ. Hence:


\displaystyle (2)/(\sin2\theta)=2\csc2\theta

By definition:


\displaystyle 2\csc2\theta = 2\csc2\theta

Hence proven.

User Crescent Fresh
by
2.7k points