135,606 views
18 votes
18 votes
How do I solve this?

How do I solve this?-example-1
User Johnboiles
by
2.7k points

1 Answer

26 votes
26 votes

Step-by-step explanation:

a) Since this is a double displacement reaction, we write the balanced equation as


2AgNO_3(aq) + CaCl_2(aq) \\ \rightarrow 2AgCl(s) + Ca(NO_3)_2(aq)

b) Next we find the number of moles of AgNO3 in the solution.


(0.005\:\text{L})(0.500\:M\:AgNO_3) \\ = 0.0025\:\text{mol}\:AgNO_3

Next, use the molar ratio to find the necessary amount of CaCl2 to react with the AgNO3:


0.0025\:\text{mol}\:AgNO_3× \left(\frac{1\:\text{mol}\:CaCl_2}{2\:\text{mol}\:AgNO_3} \right)


= 0.00125\:\text{mol}\:CaCl_2

The volume of 0.500 M solution of CaCl2 necessary to react all of the given AgNO_3 is then


V = \frac{0.00125\:\text{mol}\:CaCl_2}{0.500\:\text{M}\:CaCl_2}


= 0.0025\:\text{L} = 2.5\:\text{mL}\:CaCl_2

c) The theoretical yield can then be calculated as


0.0025\:\text{mol}\:AgNO_3 × \left(\frac{2\:\text{mol}\:AgCl}{2\:\text{mol}\:AgNO_3} \right)


= 0.0025\:\text{mol}\:AgCl

Converting this amount of AgCl into grams, we get


0.0025\:\text{mol}\:AgCl × \left(\frac{143.32\:\text{g}\:AgCl}{1\:\text{mol}\:AgCl} \right)


= 0.358\:\text{g}\:AgCl

User Ragini
by
3.1k points