306,597 views
24 votes
24 votes
In a random sample of students at a university, stated that they were nonsmokers. Based on this sample, compute a confidence interval for the proportion of all students at the university who are nonsmokers. Then find the lower limit and upper limit of the confidence interval.

User Jbasko
by
2.9k points

1 Answer

21 votes
21 votes

Answer:

(0.8165 ; 0.8819)

Lower boundary = 0.8165

Upper boundary = 0.8819

Explanation:

Given :

Sample proportion. Phat = x/ n = 276/ 325 = 0.8492

Confidence interval :

Phat ± margin of error

Margin of Error = Zα/2* [√Phat(1 - Phat) / n]

Phat ± Zα/2* [√Phat(1 - Phat) / n]

The 90% Z critical value is = 1.645

0.8492 ± 1.645*[√0.8492(1 - 0.8492) / 325)

0.8492 ± 1.645*[√0.8492(0.1508) / 325]

0.8492 ± 1.645*√0.0003940288

0.8492 ± 0.0326535

Lower boundary = 0.8492 - 0.0326535 = 0.8165

Upper boundary = 0.8492 + 0.0326535 = 0.8819

Confidence interval = (0.8165 ; 0.8819)

User Kevin Arthur
by
2.9k points