116,287 views
17 votes
17 votes
You are given the following information about x and y.

x y Independent Dependent Variable Variable 15 5 12 7 10 9 7 11
The least squares estimate of b 0 equals ______.
a. 16.41176
b. â1.3
c. 21.4
d. â7.647

User Systempuntoout
by
2.7k points

1 Answer

24 votes
24 votes

Answer:


b_0 = 16.471

Explanation:

Given


\begin{array}{ccccc}x & {15} & {12} & {10} & {7} \ \\ y & {5} & {7} & {9} & {11} \ \end{array}

Required

The least square estimate
b_0

Calculate the mean of x


\bar x = (\sum x)/(n)


\bar x = (15+12+10+7)/(4) =(44)/(4) = 11

Calculate the mean of y


\bar y = (\sum y)/(n)


\bar y = (5+7+9+11)/(4) =(32)/(4) = 8

Calculate
\sum(x - \bar x) * (y - \bar y)


\sum(x - \bar x) = (15 - 11) * (5 - 8)+ (12 - 11) * (7 - 8) + (10 - 11) * (9 - 8)+ (7 - 11) * (11 - 8)


\sum(x - \bar x) = -26

Calculate
\sum(x - \bar x)^2


\sum(x - \bar x)^2 = (15 - 11)^2 + (12 - 11)^2 + (10 - 11)^2 + (7 - 11)^2


\sum(x - \bar x)^2 = 34

So:


b = (\sum(x - \bar x) * (y - \bar y))/(\sum(x - \bar x)^2)


b = (-26)/(34)


b_0 = y - bx


b_0 = 5 - (-26)/(34)*15


b_0 = 5 + (26*15)/(34)


b_0 = 5 + (390)/(34)

Take LCM


b_0 = (34*5+ 390)/(34)


b_0 = (560)/(34)


b_0 = 16.471

User Aidonsnous
by
2.9k points