97,091 views
28 votes
28 votes
Three consecutive odd integers have a sum of 27. Find the integers.

User Raonirenosto
by
3.5k points

1 Answer

29 votes
29 votes


\sf \bf {\boxed {\mathbb {GIVEN:}}}

Sum of three consecutive odd integers =
27


\sf \bf {\boxed {\mathbb {TO\:FIND:}}}

The values of the three integers.


\sf \bf {\boxed {\mathbb {SOLUTION:}}}


\sf\purple{The\:three\:consecutive \:odd\:integers\:are\:7,\:9\:and\:11.}


\sf \bf {\boxed {\mathbb {STEP-BY-STEP\:\:EXPLANATION:}}}

Let us assume the three consecutive odd integers to be
x,
(x+2) and
(x+4).

As per the condition, we have


Sum \: \: of \: \: the \: \: three \: \: consecutive \: \: odd \: \: integers = 27


➺ \: x + (x + 2) + (x + 4) = 27


➺ \: x + x + 2 + x + 4 = 27

Now, collect the like terms.


➺ \: (x + x + x) + (2 + 4) = 27


➺ \: 3x + 6 = 27


➺ \: 3x = 27 - 6


➺ \: 3x = 21


➺ \: x = (21)/(3) \\


➺ \: x = 7

Therefore, the three consecutive odd integers whose sum is
27 are
\boxed{ 7 },
\boxed{ 9 } and
\boxed{ 11 } respectively.


\sf \bf {\boxed {\mathbb {TO\:VERIFY :}}}


⇢ 7 + 9 + 11 = 27


⇢ 27 = 27

⇢ L. H. S. = R. H. S.


\sf\blue{Hence\:verified.}


\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35ヅ}}}}}

User Not A Bug
by
2.3k points