Answer:
We know that every number can be written as a product of prime numbers.
The method to find the factorized form of a number depends on the number, we just try to find the different factors by dividing by them, for example for the number 1000 we have:
1000 is an even number, then we can divide it by 2 (2 is a prime number)
1000 = 2*500 (so we already found a prime factor)
500 is also an even number, so we can divide it by 2
1000 = 2*500 = 2*2*250 (we found another prime factor)
dividing by 2 again we get:
1000 = 2*2*250 = 2*2*2*125
1000 = (2*2*2)*125
now we just need to factorize 125
we know that 125 is a multiple of 5, such that:
125 = 5*25 = 5*5*5
(5 is a prime number, so it is completely factorized).
Then the factorization of 1000 is:
1000 = (2*2*2)*(5*5*5) = 2^3*5^3
Now with another example, 1422
1422 is an even number, so we again start using the factor 2:
1422 = 2 = 711
then:
1422 = 2*711
we already found a factor.
711 is a multiple of 3 (the sum of its digits is a multiple of 3), then:
711/3 = 237
We can write our number as:
1422 = 2*3*237
237 is also a multiple of 3
237/3 = 79
then:
1422 = 2*3*3*79
and 79 is a prime number, so we already have 1422 completely factorized.