302,694 views
31 votes
31 votes
Hey what's the answer ?


( {y}^(2) + (5)/(7) )( {y}^(2) - (14)/(5) )


User DOSMarter
by
2.9k points

2 Answers

6 votes
6 votes


\implies {\blue {\boxed {\boxed {\purple {\sf { {y}^(4) - (73 )/( 35) y² - 2}}}}}}


\large\mathfrak{{\pmb{\underline{\orange{Step-by-step\:explanation}}{\orange{:}}}}}


= ( {y}^(2) + (5)/(7) )( {y}^(2) - (14)/(5) )\\


= {y}^(2) ( {y}^(2) - (14)/(5) ) + (5)/(7) ( {y}^(2) - (14)/(5) )\\


= {y}^(2 + 2) - ( (14)/(5) ) {y}^(2) + ( (5)/(7) ) {y}^(2) - (5 * 14)/(7 * 5)\\


= {y}^(4) - \frac{14 \: {y}^(2) }{5} + \frac{5 \: {y}^(2) }{7} - 2\\


= {y}^(4) - \frac{14 \: {y}^(2) * 7}{5 * 7} + \frac{5 \: {y}^(2) * 5}{7 * 5} - 2\\


= {y}^(4) - \frac{ 98 \: {y}^(2) + 25 \: {y}^(2) }{35} - 2\\


= {y}^(4) - (73 )/( 35) y² - 2\\


\boxed{ OR }

By using the identity
(x + a)(x - b) = {x}^(2) + (a - b)x - ab,

where
x=y²,
a=(5)/(7) and
b= (14)/(5)


= ( {y}^(2) + (5)/(7) )( {y}^(2) - (14)/(5) )\\


= ({ {y}^(2) })^(2) + ( (5)/(7) - (14)/(5) ) {y}^(2) - (5)/(7) * (14)/(5)\\


= {y}^(4) + ((5 * 5)/(7 * 5) - (14 * 7)/(5 * 7) ) {y}^(2) - 2\\


= {y}^(4) + ( (25 - 98)/(35) ) {y}^(2) - 2\\


= {y}^(4) - (73)/(35) {y}^(2) - 2\\


\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35ヅ}}}}}

User Ahmad Mageed
by
2.6k points
17 votes
17 votes

Answer:
y^4 +
(-73)/(35)y^2-
2

Explanation:

Use FOIL:


y^4 +
(-14)/(5)y^2 +
(5)/(7)y^2 +
(-70)/(35)

Make
(-14)/(5)y^2 and
(5)/(7)y^2 have the same numerator:


(-14*7)/(5*7)y^2 =(-98)/(35)y^2


(5*5)/(7*5) y^2=(25)/(35) y^2

Then add like terms and simplify:


y^4 +
(-98)/(35)y^2 +
(25)/(35) y^2 +
(-70)/(35)


y^4 +
(-73)/(35)y^2-
2

Hey what's the answer ? ( {y}^(2) + (5)/(7) )( {y}^(2) - (14)/(5) ) ​-example-1
User Martin CR
by
3.0k points