123,808 views
37 votes
37 votes
What is the following quotient?

StartFraction 6 minus 3 (RootIndex 3 StartRoot 6 EndRoot) Over RootIndex 3 StartRoot 9 EndRoot EndFraction
2 (RootIndex 3 StartRoot 3 EndRoot) minus RootIndex 3 StartRoot 18 EndRoot
2 (RootIndex 3 StartRoot 3 EndRoot) minus 3 (RootIndex 3 StartRoot 2 EndRoot)
3 (RootIndex 3 StartRoot 3 EndRoot) minus RootIndex 3 StartRoot 18 EndRoot
3 (RootIndex 3 StartRoot 3 EndRoot) minus 3 (RootIndex 3 StartRoot 2 EndRoot)

User Tyreke
by
2.6k points

2 Answers

9 votes
9 votes

Answer:

A

Explanation:

User Alpha Huang
by
3.0k points
18 votes
18 votes

Answer:

A.
2(3^{(1)/(3)})-\sqrt[3]{18}

Explanation:

We are given that


\frac{6-3(\sqrt[3]{6}}{\sqrt[3]{9}})

We have to find the quotient.


\frac{6}{\sqrt[3]{9}}-3(\frac{\sqrt[3]{6}}{\sqrt[3]{9}})


\frac{2* 3}{\sqrt[3]{3^2}}-3(\frac{\sqrt[3]{3* 2}}{\sqrt[3]{3^2}})


2*\frac{3}{3^{(2)/(3)}}-3(\frac{2^{(1)/(3)}* 3^{(1)/(3)}}{3^{(2)/(3)}})

Using the property


(ab)^n=a^n\cdot b^n


2* 3^{1-(2)/(3)}-3(2^{(1)/(3)}* 3^{(1)/(3)-(2)/(3)})

Using the property


(a^x)/(a^y)=a^(x-y)


2(3^{(1)/(3)})-3(2^{(1)/(3)}* 3^{-(1)/(3)})


2(3^{(1)/(3)})-2^{(1)/(3)}* 3^{1-(1)/(3)}


2(3^{(1)/(3)})-2^{(1)/(3)}* 3^{(2)/(3)}


2(3^{(1)/(3)})-2^{(1)/(3)}* \sqrt[3]{3^2}


2(3^{(1)/(3)})-2^{(1)/(3)}* \sqrt[3]{9}


2(3^{(1)/(3)})-\sqrt[3]{2* 9}


2(3^{(1)/(3)})-\sqrt[3]{18}

Hence, the quotient of
\frac{6-3(\sqrt[3]{6}}{\sqrt[3]{9}}) is given by


2(3^{(1)/(3)})-\sqrt[3]{18}

Option A is correct.

User Suzu
by
2.7k points